TB I3-18 Flow between plates

3-30-18

N. T. Gladd

Initialization: Be sure the file NTGUtilityFunctions.m is in the same directory as that from which this notebook was loaded. Then execute the cell immediately below by mousing left on the cell bar to the right of that cell and then typing "shift" + "enter". Respond "Yes" in response to the query to evaluate initialization cells.

```
SetDirectory[NotebookDirectory[]];
(* set directory where source files are located *)
Get["NTGUtilityFunctions.m"]; (* Load utilities package *)
```


Purpose

This is the 11th in a series of notebooks in which I work through material and exercises in the magisterial new book Modern Classical Physics by Kip S. Thorne and Roger D. Blandford. If you are a physicist of any ilk, BUY THIS BOOK. You will learn from a close reading and from solving the exercises.

and the mass flow rate (the discharge) per unit width of the plates is

$$
\frac{d m}{d t d x}=-\frac{d P}{d z} \frac{2 \rho a^{3}}{3 \eta}
$$

Here $d P / d z$ (which is negative) is the pressure gradient along the direction (In Sec. 19.4 we return to this problem, augmented by a magnetic field and on current, and discover great added richness.)

The solution of this problem is analogous to the pipe flow example in section 13.7.6 of the text (see below).

```
w1[1] =
    \frac{1}{\rho}}\operatorname{Laplacian[vz[y],{x,y,z}, "Cartesian"] == 位}\operatorname{qrad[P[z],{x,y,z}, "Cylindrical"][{3]
v\mp@subsup{\mathbf{z}}{}{\prime\prime}[\mathbf{y}]
```

```
w1[2] = DSolve[{w1[1], vz[-a] == 0, vz[a] == 0}, vz[y], y][1, 1] // Simplify
vz[y]}->\frac{(-\mp@subsup{a}{}{2}+\mp@subsup{y}{}{2})\rho\mp@subsup{P}{}{\prime}[z]}{2\eta
```

which is 13.82 a

The mass per time flowing through a particular z level is

$$
\begin{equation*}
\frac{\mathrm{dm}}{\mathrm{dt}}=\int_{A} \mathrm{dA} \rho \mathrm{vz} \tag{1}
\end{equation*}
$$

Thus

```
\(\mathrm{w} 1[4]=\) dmdt \(==\) Integrate \(\left[\frac{\left(-a^{2}+y^{2}\right) \rho P^{\prime}[z]}{2 \eta},\{y,-a, a\},\{x, 0, L x\}\right]\)
\(d m d t=-\frac{2 a^{3} L x \rho P^{\prime}[z]}{3 \eta}\)
```

and the flow per length $L x$ of the plate is

```
w1[5] = MapEqn[(#/Lx) &, w1[4]]
dmdt
```

which is 13.82 b).

Pipe flow basics

I work through the example of flow in a pipe in Section 13.7.6

Consider Navier-Stokes equation with gravity assumed negligible

$$
\begin{equation*}
\frac{\partial \boldsymbol{v}}{\partial t}+(\boldsymbol{v} \cdot \nabla) \cdot \boldsymbol{v}=-\frac{\nabla P}{\rho}+\frac{1}{\rho} \frac{\partial \sigma_{\mathrm{ik}}}{\partial x_{k}} \tag{2}
\end{equation*}
$$

For incompressible flow, this can be written

$$
\begin{equation*}
\frac{\partial \boldsymbol{v}}{\partial t}+(\boldsymbol{v} \cdot \nabla) \cdot \boldsymbol{v}=-\frac{\nabla P}{\rho}+\alpha \nabla^{2} \boldsymbol{v} \tag{3}
\end{equation*}
$$

where I use $\alpha=\eta / \rho$ to represent the kinetic viscosity. The Mathematica font for "nu" looks too much like "vee".
Consider time stationary flow through a pipe -implies $\partial \mathbf{v} / \partial \mathrm{t}=0$.
$(\boldsymbol{v} \cdot \nabla) \cdot \boldsymbol{v}=-\frac{\nabla P}{\rho}+\alpha \nabla^{2} \boldsymbol{v}$
Assume flow in laminar in the pipe $\mathbf{v}=v_{z}(\mathrm{R}) \mathbb{1}_{z}-\operatorname{implies}\left(v_{z}(\mathrm{R}) \frac{\partial}{\partial z}\right) v_{z}(\mathrm{R})=0$.
Assume the pressure depends only z

$$
\begin{equation*}
\frac{\nabla_{z} P}{\rho}=\alpha \nabla^{2} v_{z} \tag{5}
\end{equation*}
$$

```
w2[1] = \frac{1}{\rho}Laplacian[vz[R], {R, },\textrm{Z}},\mp@code{"Cylindrical"]==
    \frac{1}{\eta}}\operatorname{Grad}[P[z],{R,0,z}, "Cylindrical"] \llbracket3\rrbracket
\frac{\frac{V\mp@subsup{z}{}{\prime}[R]}{R}+V\mp@subsup{Z}{}{\prime\prime}[R]}{\rho}==\frac{\mp@subsup{\mathbf{P}}{}{\prime}[\mathbf{Z}]}{\eta}
```

where

```
w2[2] = DSolve[w2[1], vz[R], R][1, 1]
vz[R] C C[2] +C[1] Log[R] + }\frac{\mp@subsup{\textrm{R}}{}{2}\rho\mp@subsup{\textrm{P}}{}{\prime}[\textrm{z}]}{4\eta
```

Boundary condition is $\mathrm{vz}[\mathrm{a}]=0$.

```
w2[3] = w2[2] /. R -> a /. vz[a] -> 0 // RE
```



```
w2[4] = Sol[w2[3], C[2]]
C[2] ->\frac{-4\etaC[1]Log[a]- a}{}\mp@code{\rho}\rho\mp@subsup{\textrm{P}}{}{\prime}[z]
```

```
w2[5] = w2[2] /. w2[4] // Expand
```


Symmetry condition is $\mathrm{vz}{ }^{\prime}[0]=0$

```
w2[6] = (D[#, R]) & /@ w2[5]
Vz'[R]->\frac{C[1]}{R}+\frac{R\rho\mp@subsup{P}{}{\prime}[z]}{2\eta}
```

For For $v^{\prime}[R] \rightarrow 0$ and $R \rightarrow 0$, must have $C[1]=0$

```
w2[7] = w2[5] /. C[1] -> 0 // Simplify
vz[R] }\frac{(-\mp@subsup{a}{}{2}+\mp@subsup{R}{}{2})\rho\mp@subsup{P}{}{\prime}[z]}{4\eta
```

Calculate the flow rate

```
\(\mathrm{W} 2[8]=\mathcal{F}=\operatorname{Integrate}\left[\frac{\left(-\mathrm{a}^{2}+\mathrm{R}^{2}\right) \rho \mathrm{P}^{\prime}[\mathrm{z}]}{4 \eta} 2 \pi R,\{R, 0, a\}\right]\)
\(\mathcal{F}=-\frac{a^{4} \pi \rho \mathrm{P}^{\prime}[\mathbf{z}]}{8 \eta}\)
```

which is TB 13.81.

Visualizations

```
Module[{a=1, \eta=1, dPdz = - 1, w = 0.1,
    Lx = 2, Lz = 3, P = {0, 0, 1.5}, \mathbb{x = {1, 0, 0}, 1y = {0, 1, 0},}
    \mathbb{Z}={0, 0, 1}, axes, plate, fluid, flowVectors, Axis, VzFlow},
Axis[00_, P_, lab_, mult_, color_] :=
    {Directive[color, Thick], Line[{00, P}], Text[Stl[lab], mult P]};
axes = With[{mult = 1, color = LightGray},
    Axis[P, #\llbracket1\rrbracket, #\llbracket2\rrbracket, mult, color] & /@
```



```
    plate[1] = {Gray, EdgeForm[Thick], Cuboid[{0, -a, 0}, {Lx, -a + w, Lz}]};
    plate[2] = {Gray, Cuboid[{0, a, 0}, {Lx, a + w, Lz}]};
    fluid = {Blue, Opacity[0.5], Cuboid[{0, -a, 0}, {Lx, a, Lz}]};
    flowVectors = {Arrowheads[Small], White,
    Table[Arrow[{{x, y, 0}, {x, y, VzFlow[y, a, \eta, dPdz]}}],
        {y, -a, a, a/4}, {x, 0, Lx, Lx/2}]};
    Graphics3D[{axes, plate[1], plate[2], fluid, flowVectors},
    Axes }->\mathrm{ None, AxesLabel }->\mathrm{ {"x", "y", "z"},
    PlotRange }->\mathrm{ {{-0.25, Lx + 0.25}, {-1.25, 1.25}, {-0.25, Lz + 0.25}},
    PlotLabel }->\mathrm{ Stl["Flow between plates"], Boxed }->\mathrm{ False]]
```

Flow between plates

[^0]```
Module \([\{R=1, L=3, \alpha=4\), dPdz = -1, 0, \(P\), pipe, flowVectors, CyltoCar, VzFlow \(\}\),
 \(0=\{0,0,0\} ; P=\{0,0, L\} ;\)
 pipe \(=\{\{B l u e\), EdgeForm[], Opacity [0.5], Cylinder [\{0, P\}, R]\},
 \{Gray, EdgeForm[], Opacity[0.5], Cylinder[\{0, P\}, 1.1R]\},\};
 CyltoCar [R_, \(\left.\theta_{-}, z_{-}\right]:=\)CoordinateTransform[
 "Cylindrical" \(\rightarrow\) "Cartesian", \{ R, \(\theta\), z\}];
 VzFlow [R_, \(\left.\alpha_{-}, d P d z z_{-}\right]:=\frac{1}{4}\left(-1+R^{2}\right) \alpha \mathrm{dPdz} ;\)
 flowVectors \(=\) \{Arrowheads [Small], White,
 Table[Arrow[\{CyltoCar[R, \(\theta, 0]\), CyltoCar[R, \(\theta, \operatorname{VzFlow[R,~} \alpha, \operatorname{dPdz}]]\}\),
 \(\{\theta,-\pi+\pi / 8, \pi, \pi / 8\},\{R, 0.01,1.0,0.2\}]\} ;\)
 Graphics3D[\{pipe, flowVectors\}, PlotLabel \(\rightarrow\) Stl["Flow in a pipe"],
 Boxed \(\rightarrow\) False, ImageSize \(\rightarrow\) 300]]
```

                    Flow in a pipe
    

Cylindrical geometry


```
 axes, range, P, Q, \phiArc, refLines, CyltoCar, Axis, ArcArrow3D, G},
 CyltoCar[R_, 识, z_] := CoordinateTransform[
 "Cylindrical" -> "Cartesian", { R, \Theta, z}];
 Axis[00_, P_, lab_, mult_, color_] :=
 {Directive[color, Thick], Line[{00, P}], Text[Stl[lab], mult P]};
 ArcArrow3D[R_, өS_, өF_, z_] :=
 {Arrow@Table[CyltoCar[R, 0, z], {0, өS, өF, \frac{\pi}{64}}]};
 axes = With[{mult = 1.2, color = LightGray},
```



```
 range = 1.2{{-0.1, 1}, {-0.1, 1}, {-0.1, 1}};
 {P,Q} =
 With[{R=0.8, 0 = 3\pi/8, z = 0.8}, {CyltoCar[R, 0, z], CyltoCar[R, 0, 0]}];
 refLines = {Black, Line[{P, Q}], Line[{0, Q}], Point[P], Text[Stl["P"], 1.1 P],
```



```
 \phiArc = With[{R=0.4, 0=3\pi/8, z = 0},{Black, Arrowheads[0.02],
 ArcArrow3D[R, 0, 0, 0], Text["0", CyltoCar[0.7R, 0/2, z]]}];
 G[1] = Graphics3D[{axes, refLines, \phiArc}, BoxRatios -> Automatic,
 Boxed }->\mathrm{ False, Axes }->\mathrm{ None, PlotRange }->\mathrm{ range,
 ViewPoint }->{2,2,1}, PlotLabel -> Stl["cylindrical geometry"]]
 G[2] = With[{R = 0.8}, ParametricPlot3D[{{R Cos[0], R Sin[0], z}}, {0, 0, \pi/2},
 {z, 0, 1}, Mesh }->\mathrm{ False, ColorFunction }->\mathrm{ "TemperatureMap", PlotStyle }->\mathrm{ Opacity[.25],
 Axes }->\mathrm{ None, Boxed }->\mathrm{ False, ViewPoint }->\mathrm{ {2, 2, 1}, PlotRange }->\mathrm{ range]];
 Show [
 G[
 1],
 G[
 2]]]
```




[^0]:    CoordinateChartData[\{"Polar", 2\}, "CoordinateRangeAssumptions", \{R, Ө\}]
    $R>0 \& \&-\pi<\theta \leq \pi$

